If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18x-10=0
a = 5; b = -18; c = -10;
Δ = b2-4ac
Δ = -182-4·5·(-10)
Δ = 524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{524}=\sqrt{4*131}=\sqrt{4}*\sqrt{131}=2\sqrt{131}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{131}}{2*5}=\frac{18-2\sqrt{131}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{131}}{2*5}=\frac{18+2\sqrt{131}}{10} $
| -5(x+1)=-2x-20 | | 5y+3=2y=15 | | -51=3y | | 15=u-7 | | 15x-1-1.5x=6+3.5x | | 15y-5=25 | | 45m+8=5m+10 | | (2x/5)+7=11 | | 9.99*x/100=0.30 | | 17=u+2 | | 17=u=2 | | 21=m+9;m=15 | | 2y−2−10y=-8−6y | | 3t+1=4t+9 | | 15-6x=x+1 | | 82+p=112 | | 5-4w+w-1=-23 | | 248=-7(8-5x)+3x | | -1/2+4/5v=-1/3 | | 4x-17=63 | | 12h=6 | | 1/3x=2(x+1)-4 | | 1-1/9s-4=0 | | 7r+8+10r-29r=E | | 11.43+x=19.43 | | 10x-6x+168=10x+120 | | -1/4(n-3/4)=-20 | | 21+9s-10=-277 | | 3(x-5)-5x=2x+8 | | 6=14+2x | | -1/9s-8=-4 | | 18x+25=-65= |